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Abstract:  

A wireless sensor network (WSN) is a standalone device that consists of a discrete group 

of sensor nodes (SN) for information gathering, device monitoring, and environmental 

position sensing. The main challenge is to present an energy-efficient framework and 

conserve energy while building a route path alongside each sensor node at SN due to the 

limited energy resources available. Nonetheless, a great deal of energy-efficient methods 

concentrated heavily on energy harvesting and decreased energy usage, but they were 

unable to enable energy-efficient routing in WSNs with low energy usage. The research 

work uses Kinetic Gas Molecules Optimization (KGMO) based Modified Reptile Search 

Algorithm for cluster head selection to minimise the energy consumption in order to 

address this issue. Utilising a modified version of the Reptile search algorithm, the inertia 

weight of the KGMO is determined by evaluating trust (direct and indirect) based on 

energy, distance, probability of risk, delay, and Received Signal Strength Indicator (RSSI), 

with the optimal CH being chosen. Lastly, to find the shortest path, use an energy-efficient 

cross-layer-based expedient routing protocol (E-CERP), which lowers network overhead 

dynamically. Assuring security for the massive amounts of data being generated by sensors 

is the most difficult task. It must balance the trade-offs with a number of other factors, 

including power consumption, delay, latency, and data aggregation, in order to ensure 

security and make room for different types of research. The work's concept is to use a 

Bidirectional Recurrent Neural Network (BiRNN) model to identify the malicious nodes. 

When compared to previous methods, the proposed model demonstrated exceptional results 

by achieving a Packet Delivery Ratio (PDR) of 0.99, Throughput of 0.98, Packet Delay 

reduced to 0.05, Power Consumption minimized to 1.52, and an outstanding Accuracy of 

99.21%. These findings underscore its efficacy in enhancing both network performance. 

Keywords: Wireless Sensor Network, Reptile Search Algorithm, Energy-Efficient Cross-

Layer-based Expedient Routing Protocol, Clustering Head, Kinetic Gas Molecules 

Optimization. 

1. Introduction 

Small, reasonably priced sensor nodes make up a wireless sensor network (WSN). It has been 

demonstrated that WSNs are among the best methods for moving data from remote locations to a 

central data processing centre. By self-organizing, these sensors create a multihop network that can 

adapt and data compression and send it to a base station [1]. In addition to collecting more data for 

applications like Multimedia WSNs, inexpensive healthcare, intelligent buildings, military 

surveillance, agricultural and industrial monitoring, they also facilitate the transmission of multimedia 

data, including images and videos. More resources may be needed by larger sensor nodes, and 

multimedia data is usually larger. This problem has been studied and attempted to be resolved by some 

researchers [2]. One of the most important ways to increase energy conservation extends the lifespan 

of sensor nodes in wireless sensor networks. Most energy is used in packet sending and receiving [3]. 

In WSNs, sensor nodes frequently use batteries. The complexity of battery charging stems from the 

network of devices, and the battery's capacity becomes the most crucial resource for WSNs [4]. Energy 
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conservation therefore becomes crucial for WSNs. It is necessary to create a new optimisation 

algorithm in order to maximise network lifespan and energy efficiency. One of WSNs' power 

management features is clustering, which divides the network into several clusters, each of which has 

one node, referred to as the cluster head (CH) [5]. The base station (BS)'s overhead is decreased by the 

CH by merging the information it gets from every node and sending it to the BS. In scenarios where 

resources are limited, the WSN conserves energy since less nodes send data to the BS. In WSNs, 

clustering algorithms help cut down on power consumption [6]. The formation and stabilisation phases 

make up each round of the clustering algorithm's operation. The nodes are arranged into discrete 

groups, or clusters. Every group is assigned a CH [7]. The CH gathers data from sensor nodes and 

transmits the sensed data to the recipient. Moreover, while there are other factors that contribute to 

clustering, the reduction of energy consumption has been examined from that angle in some survey 

reports [8]. Most publications that cluster data contrast and compare the efficacy of different clustering 

techniques, but they hardly ever examine the goals of the strategies. As far as we are aware, no survey 

study has looked at the characteristics of WSN networks, like heterogeneity and mobility, that are 

made possible by current clustering algorithms [9]. 

As a result, cluster-oriented techniques also contributed to the network's ability to expand its lifespan. 

The techniques that are most frequently used are Low Energy Adaptive Clustering Hierarchy 

(LEACH) and Fuzzy C-Means (FCM). Additionally, based on the calculated likelihood, the cluster-

oriented LEACH approach operates in a dispersed manner and favours CH. As a result, increasing the 

WSN's energy efficiency is crucial since it shortens the network's lifespan. Using clustering to reduce 

transmission energy consumption and increase network lifetime is a successful strategy [10]. 

Clustering prevents packet collisions, increases throughput, and expands network scalability. 

Moreover, clustering reduces total energy usage. Up until now, several meta-heuristic scheme-based 

central cluster-oriented techniques have been presented. Particle Swarm Optimisation (PSO), the 

Harmony Search Algorithm (HSA), and other schemes are examples of specific, broad schemes. 

Further difficult aspects of modelling the routing schemes are the network's EE, QoS, and lifespan. 

The main drawback of using a mobile sink is information loss, which is why they are used in the 

conventional model in spite of their low energy consumption and high throughput [11]. When data 

packets are transferred using the suggested architecture from the destination node from the source 

node, information loss is prevented. Utilising the static node also lowers energy consumption. When 

paired with a mobile sink, a cluster head's mobility results in a higher transmission loss of data. When 

used in conjunction with a static sink, the cluster head's immobility reduces the likelihood of data loss 

[12]. 

Motivation: 

In Wireless Sensor Networks (WSNs), locating malicious nodes is critical to maintaining network 

security, dependability, and data integrity. Through the identification and isolation of these rogue 

elements, the network can continue to function, guaranteeing dependable operation and accurate data 

transmission. Malicious node detection protects against denial-of-service attacks, unauthorised access, 

and data manipulation while fostering greater trust among network users. Proactive steps not only 

reduce possible risks but also make WSNs more durable and effective. This promotes innovation and 

progress in a number of industries that depend on WSNs, including industrial automation, 

environmental monitoring, and healthcare systems. 

Main Contributions: 

• Introduction of a KGMO-based Modified Reptile Search Algorithm for efficient cluster head 

selection in WSNs, prioritizing factors like distance, energy, security, delay, trust evaluation, and 

RSSI. 
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• Development of an energy-efficient cross-layer-based routing protocol (E-CERP) to 

dynamically minimize network overhead by determining the shortest route. 

• Proposal of an BiRNN model to detect malicious nodes, addressing security concerns without 

compromising on factors like power consumption, delay, latency, and data aggregation. 

• Evaluation of the proposed method's performance through metrics including error estimation, 

network lifetime, packet loss rate, packet delivery ratio (PDR), packet delay, throughput, power 

consumption, and packet loss rate, demonstrating superior results compared to existing methods. 

Organization of the Paper:  

The following is the order of the residual sections: Related works are exhibited in Section 2, dataset 

details are provided in Section 3, the suggested approach is presented in Section 4, the experimental 

analysis is presented in Section 5, and a conclusion is reached in Section 6. 

2. Literature Survey 

In the work by Nouman, M., et al. [13], In order to address several security concerns and enable nodes 

to be registered using login credentials, blockchain technology was deployed on base stations (BSs) 

and cluster heads (CHs). To further categorise the nodes as malicious or legitimate, a machine learning 

(ML) classifier known as the histogram gradient boost (HGB) was applied to the BSs. The node's 

registration was removed from the network in the event that it was discovered to be malicious. On the 

other hand, the data of a node that was determined to be authentic was kept in an Interplanetary File 

System (IPFS). After creating IPFS stored the data in chunks and used it as a hash that were 

subsequently recorded in the blockchain. Verifiable Byzantine Fault Tolerance (VBFT) was also 

employed to carry out consensus and validate transactions in place of Proof of Work (PoW). 

Furthermore, extensive simulations were run with the WSN-DS (Wireless Sensor Network) dataset. 

The balanced dataset as well as the original dataset were used to evaluate the model.  

Moundounga, A. R. A., et al. [14] intended to create an anomaly identification method that would 

increase the accuracy and security of the sensor network. In order to achieve this, a detection system 

that recognised network malicious entries by learning from routing datasets was defined using machine 

learning techniques. The models relied on the stochastic assumptions of the Gaussian Mixture Model 

(GMM) and the Hidden Markov Model (HMM). In addition, the most pertinent features for the training 

were chosen using the dimensionality reduction technique. A dataset representing various network 

scenarios, including both normal and attacked cases, was used in the independently executed 

experimentation phase. A 2 HMM/3 GMM classifier was used to achieve a 92.18% classification 

accuracy as the method's output.  

The study conducted by Gebremariam, G. G., et al. [15] outlined a technique for secure attack 

localization and detection that improves security and service delivery in IoT-WSNs. Prior to beacon 

nodes transmitting information to the base station, the method generated blockchain trust values using 

a hierarchical design and Blockchain-based trust assessment and cascade encryption. According to 

simulation results, nodes' trust value was measured by cascading encryption and feature assessment, 

which rewarded nodes for their trust and service provisioning. This led to the removal of malicious 

nodes, which compromised the network's quality of service and localization accuracy. Federated 

machine learning, which combined unprocessed device data and added malicious threat intelligence to 

the blockchain, enhanced data security and transmission. Federated learning was utilised to categorise 

malicious nodes by applying a feature evaluation procedure. This method combined support vector 

machines, gradient boost, ensemble learning, hybrid random forests, and k-means clustering.  
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The paper by Lai, Y et al. [9] presented a correlation theory-based malicious-node identification 

technique to prevent fault data injection attacks. Initially, anomalies between related types of sensor 

data were found using time correlation. Malicious nodes were then identified using spatial correlation. 

In the end, event correlation was employed to confirm the presence of the detected malicious nodes.  

Ahlawat, P., et al. [16] presented the convolution coding approach, a method based on a sophisticated 

encoding technique. The first bits were assigned based on the requirements of the network, and each 

node's final code was generated using the convolution technique. Since it was a digital method, the 

binary number system could be used to represent the codes. Every node within the network possessed 

its unique final binary code, represented by the letter C. Before transmitting the data, each node was 

verified by comparing the generated code C together with the security code during a set amount of 

time. This procedure made it easier to identify hostile or intruding nodes. Additionally, the system was 

divided into clusters to improve flexibility and performance. 

The paper by Sharma, T., et al. [17] aims to increase wireless sensor networks' dependability and 

security by introducing a malicious node detection algorithm based on the density-based unsupervised 

learning technique known as the DBSCAN algorithm. The main goal of the algorithm was to create a 

routing system that could identify malicious nodes, increase network stability, and extend the life of 

the network. Within machine learning, two widely used methods were clustering and classification that 

worked well across a range of applications. In many different fields, density-based clustering was a 

well-liked and widely applied method. The most well-known and widely used density-based clustering 

algorithm, known for its ability to identify clusters of any shape, was called DBSCAN. The study 

focused on two WSN anomalies: malicious node identification and spatial redundancy. In order to save 

energy and prevent data falsification by malicious nodes, an algorithm was proposed in the article to 

identify suspicious nodes and reduce redundant data transmission.  

Ding, J., et al. [18] used an algorithm for reinforcement learning (RL) to model a selective forwarding 

attack against malicious nodes with intelligence. The purpose of the double-threshold density peaks 

clustering (DT-DPC) algorithm was to effectively identify the selective forwarding attack in a difficult 

setting. Because of persistent abnormalities, abnormal nodes were classified as malicious and isolated. 

As a result of distinct malicious behaviours and a severe setting that caused agglomerate nodes to 

malfunction universally, suspicious nodes were identified using the neighbour voting method. DT-

DPC increased network throughput even when cunning malicious nodes avoided being discovered by 

an RL algorithm. As demonstrated by DT-DPC demonstrated a low missed detection rate (MDR) in 

the simulation results of approximately 10% and a low false detection rate (FDR) of approximately 

1%. In a challenging environment, the network throughput increased by roughly 4%. 

Research Gaps 

Several research gaps persist in the domain of securing Wireless Sensor Networks (WSNs). Firstly, 

while existing studies propose various detection and prevention techniques, there's a need for more 

comprehensive approaches that address evolving threats, including sophisticated attacks targeting 

network infrastructure and data integrity. Additionally, the scalability and efficiency of proposed 

solutions require further investigation, especially in large-scale WSN deployments. Moreover, the 

integration of emerging knowledges such as blockchain, federated learning, and reinforcement 

learning into WSN security frameworks remains relatively unexplored. Bridging these gaps is crucial 

for enhancing the resilience and reliability of WSNs in the face of emerging security challenges. 

3. Methods 

Figure 1 shows the proposed work flow of the malicious node discovery model. 
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Figure 1: Block Diagram 

Network Model 

By WSN clustering seeks to reduce energy consumption. Common nodes constantly keep an eye on 

their surroundings and relay sensory information towards the cluster leader. There is only one common 

node from which the CH node is selected. Transmitting data to the BS from each cluster node requires 

the CH to perform a critical function. Grouping helps to prevent direct communication between sensors 

and receivers. In Figure 2, the WSN system model is shown [19]. 

 

Figure 2. An all-encompassing wireless sensor network architecture. 

Conditions for the Ideal Selection of CH 

The following are the many criteria that were employed to choose the best CH [20]: 

• Energy; 

• Security; 

• Distance; 

• Delay. 

Energy Model  

Energy exploitation is the main problem with WSNs. Given that the WSN battery does not use the re-

energizing method, it is impossible to provide energy in the event that the battery runs out. 

Furthermore, data from entire SNs is capable of being transmitted to the BS through additional 

resources. Energy use is essential for data transmission. The network consumes more power as a result 

of does so many different things, such as aggregation, sensing, transmission, and reception. Normally, 

Equation (1) implies the necessary energy for the entire data broadcast; under the suggested energy 

model, however, Equation (2) implies the necessary energy for the entire data broadcast, where E^i 

denotes initial energy. According to the modules mentioned, the implied electron energy is E_el, in 

which E_ea indicates the energy used to aggregate data over time. E_e implies that which Equation 

(4). E_TX (Z:di) shows the total amount of energy used for communication Z packets' bytes at different 

distances. High energy is necessary for an effective system, utilising the energy of the receiver, E_RX, 

necessary to obtain Z packet bytes at di is represented by Equation (5) illustrates the energy needed to 

amplify, E_am. 
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𝐸𝑇𝑋(𝑍: 𝑑𝑖) = 𝐸 {
𝐸𝑒𝑙 × 𝑍 + 𝐸𝑟𝑠 × 𝑍 × 𝑑𝑖

2, if 𝑑𝑖 < 𝑑𝑖0
𝐸𝑒𝑙 × 𝑍 + 𝐸𝑝𝑣 × 𝑍 × 𝑑𝑖

2, if 𝑑𝑖 ≥ 𝑑𝑖0
     (1) 

𝐸𝑇𝑋(𝑍: 𝑑𝑖) = 𝐸 {
𝐸𝑖 − 𝐸𝑒𝑙 × 𝑍 + 𝐸𝑟𝑠 × 𝑍 × 𝑑𝑖

2, if 𝑑𝑖 < 𝑑𝑖0
𝐸𝑖 − 𝐸𝑒𝑙 × 𝑍 + 𝐸𝑝𝑣 × 𝑍 × 𝑑𝑖

2, if 𝑑𝑖 ≥ 𝑑𝑖0
     (2) 

𝐸𝑒𝑙 = 𝐸𝑇𝑋 + 𝐸𝑒𝑑    (3) 

𝐸𝑅𝑋(𝑍: 𝑑𝑖) = 𝐸𝑒𝑙𝑍     (4) 

𝐸𝑎𝑚 = 𝐸𝑓𝑟𝑑𝑖
2    (5) 

𝑑𝑖0 = √
𝐸𝑓𝑟

𝐸𝑝𝑎𝑚
    (6) 

In the above equations, di_0 stands for threshold distance; E_"pam "  represents energy of PA; E_fr 

represents the necessary energy when using the free space method; E_1 symbolises the energy of the 

whole inactive state; E_C shows the cost of energy for the entire sense phase. Equation (7) indicates 

the total energy required to transmit data. 

𝐸total = 𝐸𝑇𝑋 + 𝐸𝑅𝑋 + 𝐸1 + 𝐸𝐶     (7) 

Security 

Mode of security: This chooses the CH that meets the requirements for security. In Equation (8), 

q_r&q_s mentions, in that order, security rank and CHS-related security requirements. The symbols 

for the nodes are CH, if q_s≤q_r. 

Risky mode: To obtain the best CH for capturing every risk, an existing CH is chosen in this case. 

Consequently, during the CHS procedure, this mode is referred to as insistent mode. 

γ-risky mode: In γ-risky mode, the CH who are subject to a severe risk are selected. Furthermore, γ-

risk is referred to as u_"risk " . Then, as in the other two modes, γ indicates the probability metric with 

η=0 and γ=1. 

Equation (8) illustrates the probability of security variables. Furthermore, if the selected CH 

accomplishes the state q_s>q_r, less than 50% of the risk should exist. If the circumstance is 0<q_s-

q_r≤1, selection procedure would be adhered to, and should the state be 1<q_s-q_r≤2, The selection 

procedure will take longer than expected. But the CHS procedure wouldn't end there, and the state 

should keep performing the related role 2<q_s-q_r≤5. Consideration is given to the risk factor in the 

security analysis. As a result, there must be little security. 

𝑆𝑒 =

{
 
 

 
 

0  if 𝑞𝑠 − 𝑞𝑟 ≤ 0

1− 𝑒
(𝑞𝑠−𝑞𝑟)

2  if 0 < 𝑞𝑠 − 𝑞𝑟 ≤ 1

1 − 𝑒
3(𝑞𝑠−𝑞𝑟)

2  if 1 < 𝑞𝑠 − 𝑞𝑟 ≤ 2

1  if 2 < 𝑞𝑠 − 𝑞𝑟 ≤ 5

     (8) 

Distance 

Equation (9). computes the packet communication distance from regular nodes to the CH and BS 

from the CH. A good system needs to have a short distance. 

𝐷𝑖 =
𝐷𝑖

dist 

(𝑚)

𝐷𝑖
dist 

(𝑛)      (9) 
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where, 𝐷𝑖dist 

(𝑚)
= ∑  𝑑

𝑞=1  ∑  
𝑀𝑒
𝑡=1   ∥∥𝑑𝑞

norm −𝑀𝑐
𝑡∥∥ + ∥∥𝑀𝑐

𝑡 − 𝐼𝑘∥∥     (10) 

𝐷𝑖dist 

(𝑛)
= ∑  𝑑

𝑞=1  ∑  𝑑
𝑡=1  ∥∥𝑑𝑞

norm − 𝑑𝑡
norm 

∥∥    (11) 

Delay 

Equation (12), in which d denotes the network's total cluster count, is used to calculate delay and 

M_c^e suggests the related CH. Minimum delay is necessary for a good system. 

𝐷𝑒𝑑𝑒𝑙 =
𝑀𝑐
𝑒

𝑀𝑐
𝑡(𝑀𝑐

𝑡)

𝑑

    (12) 

Trust 

In order to gauge the degree of trust between hops and adjacent hops, higher trust is offered by every 

hop in the WSN. Equation (13) indicates that trust can be assessed using two factors: direct and indirect 

trust. A good system needs a high degree of trust. 

Tr = {Tr𝑑 + Tr𝑖𝑑}     (13) 

Direct trust: computed as indicated by Equation (14), where, (𝑇𝑟𝑑)𝑦
𝑧  indicates unwavering trust for 

the 𝑦th transaction and the 𝑧th time frame, 𝑠𝑚 stands for the satisfaction metric, 𝑧 denotes Time 

interval, 𝑦 signifies a transaction, 𝑜 indicates Hop Estimation, and 𝑜 + 1 denotes Hop for assessment. 

(𝑂𝑑)𝑦
𝑧(𝑜, 𝑜 + 1) = sm𝑦

𝑧 ⁡(𝑜, 𝑜 + 1)     (14) 

In Equation (15), 𝑠𝑚 is assessed as in Equation (15), wherein 𝑠𝑚𝑣 indicates the level of satisfaction 

with the current gearbox, 𝑠𝑚𝑦−1
𝑧 (𝑜, 𝑜 + 1) denotes 𝑦 − 1 value of transmission satisfaction at the 𝑧th 

time interval, where 𝜂  stands for weight. 

𝑠𝑚𝑦
𝑧(0, 𝑜 + 1) = 𝜂 × 𝑠𝑚𝑣 + (1− 𝜂) × 𝑚𝑦−1

𝑧 (0, 𝑜 + 1)    (15) 

𝑠𝑚𝑣 = {

0;  if transmission is unsatisfactory 

1;  if transmission is satisfactory 

∈ (0,1);  else 

    (16) 

Indirect trust: indirect faith in the hop with reference to (𝑜 + 1) th is evaluated in accordance with 

Equation (17), where 𝑉 represents the agent group communicating with 𝑜 + 1, 𝑎 denotes hop, and 𝐾𝑦
𝑧 

indicates the creditability of the feedback. 𝐾𝑦
𝑧 is evaluated using Equation (18), which 𝐿𝑦

𝑧  indicates 

similarity. Equation (19), where l is the similarity deviation constant, is used to evaluate the similarity 

between hops, 𝛿&𝜔 indicates the factor of reward and punishment, and ℜ𝑦
𝑧(0,0+ 1) denotes 

personalized difference. 

(Tr𝑖𝑑)
𝑦

𝑧
(𝑜, 𝑜 + 1) = {

∑  𝑎∈𝑈−{𝑜}  𝐾𝑦
𝑧(𝑜,𝑎)×(Tr𝑑)

𝑦

𝑧
(𝑎,𝑜+1)

∑  𝑎∈𝑈−{𝑜}  𝐾𝑦
𝑧(𝑜,𝑎)

0;  if |𝑣 − {𝑜}| > 0

     (17) 

𝐾𝑦
𝑧(𝑜, 𝑜 + 1) = {

1−
ln⁡(𝐿𝑦

𝑧 (𝑜,𝑜+1))

ln⁡ 𝜑
;  if (𝐿𝑦

𝑧 (𝑜, 𝑜 + 1)) > 𝜑

0;  else 
     (18) 
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𝐿𝑦
𝑧 (0,0+ 1) = {

𝐿𝑦−1
𝑧 (0,0+ 1) +

1−𝐿𝑦−1
𝑧 (0,0+1)

𝜔
;  if ℜ𝑦

𝑧(0,0+ 1) < 𝑙

𝐿𝑦−1
𝑧 (0,0+ 1) −

1−𝐿𝑦−1
𝑧 (0,0+1)

𝛿
;  else 

    (19) 

RSSI 

According to Fris, RSSI becomes distorted when the inverse square of the separation between the 

sender and the recipient. Equation (20) can be used to model it, and Equation (21) can be used to 

compute B, which stands for distance. An effective system requires a high RSSI. 

RSSI = −36 × log⁡(B) − 55    (20) 

B = 10
(RSSI+55)/−36⁡⁡⁡⁡⁡(21) 

Objectives 

Equation (22) illustrates the goal of the method based on BEA-SSA for choosing the best CH, where 

𝑑𝑖 is the distance, 𝐸𝑝 is the energy, 𝑆𝑒 is the security, 𝐷𝑒 is the delay, Tr is the trust, and the term 

"Received Signal Strength Indicator" refers to RSSI. Below is a representation of the goal function. 

The goal is to minimise the parameters of distance, security, and delay while maximising the RSSI, 

energy, and trust parameters. In this case, security analysis considers the risk factor. So, the lowest 

possible risk factor is necessary. 

𝑂𝑏𝑗 = min [
(𝑤𝑒1 × 𝑑𝑖) + (𝑤𝑒2 × (1− 𝐸

𝑝)) + (𝑤𝑒3 × (𝑆𝑒))

+(𝑤𝑒4 × 𝐷𝑒) + (𝑤𝑒5 × (1− Tr)) + (𝑤𝑒6(1− RSSI))
]     (22) 

𝑤𝑒1 − 𝑤𝑒6 are weighing variables that vary from 0 to 1; 𝑤𝑒1 is paired with 0.2, 𝑤𝑒2 is paired with 

0.3, 𝑤𝑒3 is paired with0.1, 𝑤𝑒4 is paired with 0.2, 𝑤𝑒5 is paired with 0.1 , and 𝑤𝑒5 is paired with 0.1 . 

Clustering using KGMO based MRSA 

The initial use of KGMO [21] in this paper has an inertia weight disadvantage. To solve this problem 

this paper uses a MRSA. A recently created optimisation method that effectively addresses a variety 

of optimisation issues is called the RSA. However, the RSA has certain disadvantages, involving high 

computational complexity, sluggish convergence, and local minima trapping, when attempting to solve 

nonconvex, high-dimensional optimisation problems. As a result, some modifications to the original 

RSA algorithm are suggested in order to address these problems [22]. 

It is necessary for the solution candidates to look as far across the search space as they can to avoid 

local minima trapping. Consequently, a sine operator was added to the high walking stage of the RSA 

algorithm to improve exploration. The sine cosine algorithm's dynamic exploration mechanism (SCA) 

served as the inspiration for this modification. One can perform global exploration with the help of the 

sine operator. Therefore, by performing a thorough search of the solution space, one way to avoid local 

minima trapping in the IRSA is to include a sine operator. Using the sine operator, the MRSA equation 

was changed to the following one. 

𝑥𝑗𝑘(𝜏 + 1) = Best𝑘⁡(𝜏) + (𝑟1 × sin⁡( rand ) × |𝑟2 × Best𝑘⁡(𝜏) − 𝑥𝑗𝑘|, ⁡ for ⁡𝜏 ≤
𝑇

3
(23) 

where 𝑟1, 𝑟2, and Randomly selected numbers are known as rand 0 and 1. 𝑥𝑗𝑘 is the situation as it stands 

now, and Best ⁡𝑘 is the ideal remedy. The Levy distribution function is followed by a random process 

known as the Levy flight.  

 levy = 0.01 ×
𝑢

𝑣
1
𝜁

(24) 
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where 𝑢 and 𝑣 obey normal distribution. 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑢 ∼ (0, 𝜎𝑢
2), 𝑣 ∼ (0, 𝜎𝑣

2)⁡⁡⁡⁡⁡(25)

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜎𝑢 = (
𝛿(1+ 𝜁)sin⁡

𝜋𝜁
2

𝛿 [
1+ 𝜁

2
] 𝜁 ∗ 2

𝜁−
1
2

)

1/𝜁

⁡⁡⁡(26)
 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜎𝑣 = 1⁡⁡⁡⁡(27)  

where 𝛿 is a typical gamma function. 𝜁 is a crucial factor that establishes the jump size in the Levy 

fight. The reduced amount of 𝜁 leads to sporadic, tiny steps. This enhances exploitation capabilities by 

allowing the region nearest the obtained solution should be searched by the solution candidates. The 

enhanced utilisation ensures worldwide convergence. In the last stages of MRSA, the position is 

updated using the Levy operator 

𝑥𝑗𝑘(𝜏 + 1) = Best𝑘⁡(𝜏) + randn ×  levy ⊕ (𝑥𝑗𝑘 − Best𝑘⁡(𝜏)), for 𝜏 ≤ 𝑇 and 𝜏 > 3
𝑇

4
(28) 

where ⊕ indicates multiplication by entry, and rand 𝑛 is a random number with a uniform distribution.  

The algorithm's complexity is significantly reduced by these improvisations. Nevertheless, we are able 

to remove these equations from the algorithm by making the aforementioned modifications. This 

implies that the time complexity of the suggested MRSA algorithms is reduced by nearly three to four 

times since they are not required to calculate these equations. 

The suggested technique shows improvements in global exploration, speed, low time high efficiency, 

and high efficiency. When combined, the MRSA's pseudocode is displayed in Algorithm 1. 

Algorithm 1 Pseudocode of MRSA 

Initialize random population x 

Initialize iteration counter τ=0, extreme iteration T, alpha, beta 

while τ<T 

Evaluate fitness of potential candidates 

Determines the best solution 

Update Es, P(j,k)  

for j=1:p 

for k=1:n 

If τ≤T/3 

Solve using Equation (23) 

else if τ≤2 T/4 and τ>T/3 

else if τ≤3 T/4 and τ>2 T/4 

else 

Solve using Equation (28) 

end if 

end for 
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end for 

t=t+1 

end while 

Return best solution 

 

WSN Routing Algorithm for E-CERP 

The energy-efficient cross-layer-based transfers data over the shortest paths in a scalable and energy-

efficient manner. It lowers packet delays and improves the communication link's dependability [19]. 

There are various issues with the current CORP algorithm, this is an opportunistic routing protocol 

that operates across layers: 

• Because of the limited computing power of the WSNs, an increasing number of constraints 

results in high data transmission complexity. 

• It is difficult to integrate them. 

• They use a lot of power and have high delivery rates, packet losses, and communication 

delays. 

The objective of the suggested E-CERP technology, which addresses the issues with traditional 

routing protocols, is to optimise the broadcast power of the nodes by making use of the network's 

residual energy. 

(i) Local broadcast 

The ID, path cost, and hop every node is infinite, it may vary from round to round. Considering the 

HELLO messages that it gets, every node arranges its list of neighbours. The received signal strength 

indicator (RSSI) of incoming correspondence is used to calculate signal strength. The link reliability 

metric is calculated using the average RSSI 𝐿(𝑛,𝑚), expressed in Equation (29). 

𝐿𝑛,𝑚 = 𝑇𝑚𝑡𝑝 − 𝑇𝑎𝑟𝑝 (29) 

The following is how the link cost is estimated using the Lagrange multiplier: 

cos⁡(𝑛,𝑚) = 𝑋𝑐𝑖𝑟 + 𝑋𝑎𝑟𝑝 +
In⁡ 𝐼

𝑣
⋅

1

ℎ𝑛𝑚
(30) 

(ii) Routing algorithm 

A parent Par⁡(𝑛) must be selected to serve as the subsequent hop sensor node for a given sensor node 

𝑛 in order to send information to the BS from node n. The formula in mathematics can be expressed 

in the following way: 

Par⁡(𝑛) = arg
𝑚∈𝑁𝑖(𝑛)

⁡min[cost⁡(𝑚) + cost⁡(𝑛,𝑚)] (31) 

A cost-based route is constructed using the parent route selection and the cost function as indicated in 

Equation (10). Updates are made to the parent preferences in every round. 

(iii) Transmission Power Control (TPC) 

Equation (32) can be used to determine the optimal transmit power based on hop count: 
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⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑇𝑡𝑥(𝑛) =
1

ℎ𝑛
[ln⁡ 𝐼 + ln⁡ (ℎ𝑛∑ 

𝐻

𝑛=1

 
1

ℎ𝑛
)]⁡⁡⁡(32)  

Relatively speaking, the transmitted execution is simplified, and Equation (33) can be used to 

determine the upper bound: 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(∑  

𝐻

𝑛=1

 
1

ℎ𝑛
) ln 𝐼 ≤∑  

𝐻

𝑛=1

 𝑋𝑡𝑥(𝑛) ≤ (∑  

𝐻

𝑛=1

 
1

ℎ𝑛
) (ln 𝐼 + ln𝐻)⁡⁡⁡(33)  

Equation (34) is thus used to estimate the upper bound for the given sensor node. 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑋𝑡𝑥(𝑛) =
1

ℎ𝑛𝑚
[ln⁡ 𝐼 + ln⁡ 𝐻(𝑛)] (34) 

where " 𝐼 " is the intended end-to-end success likelihood and " 𝐻 " symbolises the number of hops. 

After assessing the transmitting power, the optimal path for data broadcast and reception has been 

identified. It uses very little energy conservation and has very little packet loss and delay. 

Malicious node detection 

WUSTL-IIOT-2018 Dataset 

Targeting reconnaissance attacks on SCADA is the goal of the ICS data set WUSTL-IIoT-2018 for 

SCADA cyber security studies. Among recognition's components the use of examining tools by 

intruders to find network devices and potential vulnerability sites [23]. The subsequent reconnaissance 

attacks Address scanning, port scanning, and device identification and exploitation were carried out 

against the testbed. Using FS, the writers were able to pinpoint traits that hold the greatest promise for 

the success of the data set, even though the basic data contained 25 networking features: The total 

transaction packet count (Totpkts), total transaction bytes (TotBytes), source/destination packet count 

(SrcPkts), and destination/source packet count (DstPkts) are all displayed. These features serve as a 

prototype for researching model evaluation and machine learning decisions. Additionally, a system for 

audit record production and implementation was in place to monitor all network traffic, of which 

6.07% was malicious and 93.93% was benign. 

Classification using Bidirectional Recurrent Neural Networks 

The network that is bidirectional in rather than eliminating individual components,  the model begins 

with a spatial dropout layer that eliminates entire feature maps [24]. The bidirectional RNN (BiRNN) 

layer, which links two hidden layers with opposing directions (forward and backward) to the same 

output, is then fed the result of this layer. GRU is the foundation of BiRNN. The output of the BiRNN 

layer is subsequently simultaneously received by the global average and global maximum pooling 

layers. The next step's new input is created by combining the outputs of these two layers. 

A feature map grid (window) or several windows are created from each input feature map. The mean 

of an n-sized window is determined by the average pooling function in the following manner: 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
𝑥1 + 𝑥2 +⋯+ 𝑥𝑛

𝑛
(35) 

The input window's maximum value number is selected by max-pooling {𝑥1, . . 𝑥𝑛}. The objective of 

average and maximising the number of dimensions in the data while preserving important information 

is the goal of pooling [25]. 

The one GRU cell has the following functions: 
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⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑧𝑡𝑖 = 𝜎(𝑊𝑥𝑧𝑥𝑡𝑖 +𝑊𝑠𝑧𝑠𝑡𝑖−1 + 𝑏𝑧) (36)

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑒𝑡𝑖 = 𝜎(𝑊𝑥𝑒𝑥𝑡𝑖 +𝑊𝑠𝑒𝑠𝑡𝑖−1 + 𝑏𝑒) (37)

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑔𝑡𝑖 = tanh⁡(𝑊𝑥𝑔𝑥𝑡𝑖 +𝑊ℎ𝑔(𝑒𝑡𝑖⊙ ℎ𝑡𝑖−1) + 𝑏𝑔) (38)

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑠𝑡𝑖 = (1− 𝑧𝑡𝑖) ⊙ 𝑠𝑡𝑖−1 + 𝑧𝑡𝑖 ⊙𝑔𝑡𝑖 . (39)

 

where 𝑥𝑡𝑖 is the GRU cell's input at that moment 𝑡𝑖.𝑊𝑥𝑔,𝑊𝑥𝑧 and 𝑊𝑥𝑒 are the input-receiving weight 

matrices 𝑋𝑡𝑖.𝑊𝑠𝑔,𝑊𝑠𝑒 and 𝑊𝑠𝑧 are the weight matrices with the prior cell state vector as their input. 

tanh is an activation function for hyperbolic tangents, and 𝜎 is an activation function for sigmoid. 

𝑏𝑒 , 𝑏𝑔, and 𝑏𝑧 the bias units. 𝑠𝑡𝑖 is the result at that moment 𝑡𝑖. ⊙ alludes to the Hadamard item [26]. 

Each GRN cell in a BiRNN computes the hidden state moving forward 𝑠𝑡𝑖−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and the reverse path 𝑠𝑡𝑖+1⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 
As a result, Features that benefit the BiGRU in both directions. The concept of BiRNNs is explained 

by the following equation. 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑠𝑡𝑖 = 𝑠𝑡𝑖−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⁡⊕⁡𝑠𝑡𝑖+1⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ (40) 

where ⊕ represents the elementwise sum of the two vectors in the left and right directions. 

4. Results and Discussions 

Experimental Setup 

Python was utilised in the implementation of the suggested approach. A number of Python libraries 

were used for preprocessing, cleaning the data, and implementing the model. The scikit-learn library 

was used to assess the deep learning model after it was put into practice using the Keras library. Rather 

than utilising a graphics processing unit, it employed the tensor cloud-based Python notebook designed 

to foster teamwork. Table 1 lists the parameters taken into account when setting up the simulation.  

Table 1. Configuration parameters for the simulation. 

Parameters  Value 

Number of nodes 500 

Deployment area  500 × 500 

Total Clusters 6 

Packet size  512 bytes 

Packet sending rate 1 packet/s 

Initial energy 0.5J 

Data testers 55 

 

Performance Metrics 

Packet Delivery Ratio (PDR): 

 PDR =
 Number of Packets Received 

 Number of Packets Sent 
× 100%                             (41) 

Packet Delay: 

 Packet Delay =
 Total time taken for all packets to reach destination 

 Number of Packets Sent 
                            (42) 

Throughput: 

 Throughput =
 Total amount of datatransferred 

 Total time taken 
                             (43) 

Power Consumption: 
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Power Consumption = Voltage × Current × Time                    (44) 

Accuracy: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦⁡(𝐴𝐶𝐶) =
𝑁𝑜.𝑜𝑓⁡𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦⁡𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙⁡𝑛𝑜.𝑜𝑓⁡𝑖𝑚𝑎𝑔𝑒𝑠
× 100                    (31) 

Precision: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡(𝑃𝑅) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100                   (32) 

F1-score: 

𝐹1− 𝑠𝑐𝑜𝑟𝑒⁡(𝐹1) = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
× 100                  (33) 

Recall: 

𝑅𝑒𝑐𝑎𝑙𝑙⁡(𝑅𝐶) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100                  (34) 

Specificity: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦⁡(𝑆𝑃) =
𝑇𝑁

𝑇𝑁+𝐹𝑃
× 100                  (35) 

Clustering Evaluation 

Table 2-5 shows the performance analysis of the projected KGMO based MRSA with various number 

of nodes. 

Table 2: PDR validation 

Models 100 200 300 400 500 

RSA 0.94 0.93 0.92 0.91 0.90 

MRSA 0.95 0.94 0.93 0.92 0.91 

KGMO 0.97 0.96 0.95 0.94 0.93 

Proposed KGMO based MRSA 0.99 0.98 0.97 0.96 0.95 

 

In Table 2 and figure 3, the Packet Delivery Ratio (PDR) validation results for various models across 

different nodes are presented. The models evaluated include the Reptile Search Algorithm (RSA), 

which achieved PDR values of 0.94, 0.93, 0.92, 0.91, and 0.90 for nodes of 100, 200, 300, 400, and 

500 nodes respectively. The Modified Reptile Search Algorithm (MRSA) exhibited slightly higher 

PDR values, with measurements of 0.95, 0.94, 0.93, 0.92, and 0.91 for the same respective network 

sizes. Meanwhile, the Kinetic Gas Molecules Optimization (KGMO) algorithm demonstrated even 

better performance, yielding PDR values of 0.97, 0.96, 0.95, 0.94, and 0.93. Notably, the proposed 

approach, leveraging a KGMO based Modified Reptile Search Algorithm, showcased superior PDR 

values across all nodes, reaching 0.99, 0.98, 0.97, 0.96, and 0.95 correspondingly. These results 

underscore the efficacy of the proposed method in significantly enhancing packet delivery reliability 

compared to conventional algorithms. 
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Figure 3: PDR analysis of the malicious node detection 

Table 3: Throughput validation 

Models 100 200 300 400 500 

RSA 0.93 0.93 0.93 0.92 0.92 

MRSA 0.94 0.94 0.95 0.93 0.93 

KGMO 0.96 0.97 0.96 0.95 0.95 

Proposed KGMO based MRSA 0.98 0.98 0.97 0.97 0.97 

 

Table 3 and figure 4 outlines the results of Throughput validation for different models across varying 

nodes. The models evaluated include the Reptile Search Algorithm (RSA), which achieved Throughput 

values of 0.93, 0.93, 0.93, 0.92, and 0.92 for nodes of 100, 200, 300, 400, and 500 nodes respectively. 

The Modified Reptile Search Algorithm (MRSA) showed slightly improved Throughput, with 

measurements of 0.94, 0.94, 0.95, 0.93, and 0.93 for the same respective nodes. On the other hand, the 

Kinetic Gas Molecules Optimization (KGMO) algorithm demonstrated even higher Throughput 

performance, yielding values of 0.96, 0.97, 0.96, 0.95, and 0.95. Notably, the proposed KGMO based 

MRSA approach exhibited superior Throughput values across all nodes, reaching 0.98, 0.98, 0.97, 

0.97, and 0.97 correspondingly. These results highlight the efficacy of the proposed method in 

enhancing data transfer efficiency compared to conventional algorithms. 

 

Figure 4: Throughput analysis 

Table 4: Packet delay validation 

Models 100 200 300 400 500 

RSA 2.94 4.14 5.19 7.32 8.72 

MRSA 1.96 3.62 4.16 5.15 6.11 

KGMO 1.25 2.13 3.26 4.24 5.16 

Proposed KGMO based MRSA 0.05 1.06 2.12 3.18 4.98 
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Table 4 and figure 5 displays the results of Packet Delay validation for different models across various 

nodes. The Reptile Search Algorithm (RSA) yielded Packet Delay values of 2.94, 4.14, 5.19, 7.32, and 

8.72 for nodes of 100, 200, 300, 400, and 500 nodes respectively. The Modified Reptile Search 

Algorithm (MRSA) exhibited improved Packet Delay, with measurements of 1.96, 3.62, 4.16, 5.15, 

and 6.11 for the corresponding nodes. In comparison, the Kinetic Gas Molecules Optimization 

(KGMO) algorithm demonstrated even lower Packet Delay, with values of 1.25, 2.13, 3.26, 4.24, and 

5.16. Particularly noteworthy is the proposed KGMO based MRSA approach, which significantly 

reduced Packet Delay across all nodes, achieving values as low as 0.05, 1.06, 2.12, 3.18, and 4.98 

correspondingly. These results underscore the effectiveness of the proposed technique in minimizing 

data transmission delays compared to conventional algorithms. 

 

Figure 5: Packet Delay validation 

Table 5: Power consumption validation 

Models 100 200 300 400 500 

RSA 8.45 9.42  10.21  11.13 11.67 

MRSA 7.74 5.52 7.89 7.49 7.56 

KGMO 5.43 4.23 3.55 4.25 5.14 

Proposed KGMO based MRSA 1.52 1.09 2.32 2.16 3.21 

 

In Table 5 and figure 6, the Power Consumption validation results for different models across various 

nodes are presented. The Reptile Search Algorithm (RSA) exhibited power consumption values of 

8.45, 9.42, 10.21, 11.13, and 11.67 for nodes of 100, 200, 300, 400, and 500 nodes respectively. The 

Modified Reptile Search Algorithm (MRSA) showed varied power consumption, with measurements 

of 7.74, 5.52, 7.89, 7.49, and 7.56 for the corresponding nodes. In contrast, the Kinetic Gas Molecules 

Optimization (KGMO) algorithm demonstrated lower power consumption, with values of 5.43, 4.23, 

3.55, 4.25, and 5.14. Particularly notable is the proposed KGMO based MRSA approach, which 

significantly reduced power consumption across all nodes, achieving values as low as 1.52, 1.09, 2.32, 

2.16, and 3.21 respectively. These results highlight the effectiveness of the projected method in 

minimizing energy usage compared to conventional algorithms, thus contributing to enhanced 

efficiency and sustainability in wireless sensor networks. 
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Figure 6: Power Consumption analysis 

Classification validation 

Table 6 presents the malicious node detection validation of the proposed BiRNN classical. 

Table 6: Attack detection validation using various DL models 

Models ACC (%) PR (%) RC (%) F1 (%) SP (%) 

AE 85.22 85.17 85.14 85.12 85.11 

DBN 87.54 88.21 82.26 89.53 88.47 

ANN 88.38 89.52 87.36 92.23 88.27 

RNN 94.1 95.72 95.26 95.23 95.92 

Proposed BiRNN model 99.21 99.13 98.02 98.09 98.77 

 

Table 6 and figure 7 summarizes the results of Attack Detection validation using various Deep 

Learning (DL) models. The models evaluated include Autoencoder (AE), Deep Belief and the 

proposed Bidirectional Recurrent Neural Network (BiRNN) model. Each model's performance is 

assessed based on several metrics, including Accuracy (ACC), Precision (PR), Recall (RC), F1-score 

(F1), and Specificity (SP). The Autoencoder (AE) achieved an accuracy of 85.22% with corresponding 

precision, recall, F1-score, and specificity values of 85.17%, 85.14%, 85.12%, and 85.11% 

respectively. The Deep showed an accuracy of 87.54% with precision, recall, F1-score, and specificity 

values of 88.21%, 82.26%, 89.53%, and 88.47% respectively. The Artificial Neural Network (ANN) 

exhibited an accuracy of 88.38% with precision, recall, F1-score, and specificity values of 89.52%, 

87.36%, 92.23%, and 88.27% respectively. The Recurrent Neural Network (RNN) demonstrated the 

highest accuracy of 94.1% with precision, recall, F1-score, and specificity values of 95.72%, 95.26%, 

95.23%, and 95.92% respectively. Notably, the proposed Bidirectional Recurrent Neural Network 

(BiRNN) model outperformed all other models with an impressive accuracy of 99.21% and 

consistently superior capability in accurately detecting attacks in wireless sensor networks. 

 

Figure 7: Attack classification analysis of the malicious node 
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5. Conclusion 

To sum up, this study tackles the vital issue of security and energy efficiency in wireless sensor 

networks (WSNs). To ensure optimal routing while minimising energy consumption, the study 

incorporates various parameters like distance, energy, security, delay, trust evaluation, and RSSI. For 

cluster head selection, it uses a KGMO-based Modified Reptile Search Algorithm. Furthermore, by 

figuring out the shortest path, the suggested energy-efficient cross-layer-based expedient routing 

protocol (E-CERP) dynamically lowers network overhead. Moreover, implementing the BiRNN 

model makes it easier to identify malicious nodes, improving network security. The suggested 

approach outperforms current methods in terms of power consumption, delay, throughput, and error 

estimation, among other extensive assessment metrics. All things measured, this work makes a 

substantial contribution to the development of safe and energy-efficient routing protocols for WSNs, 

opening the door to improved network presentation and dependability in a variety of applications. The 

proposed model exhibited superior performance across various metrics of Packet Delivery Ratio (PDR) 

of 0.99, Throughput of 0.98, Packet Delay reduced to 0.05, Power Consumption minimized to 1.52, 

and an impressive Accuracy of 99.21%, indicating its effectiveness in enhancing network efficiency. 

Future work may explore ensemble DL models, edge computing integration, and adaptive security 

mechanisms for enhanced attack detection in WSNs. 
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