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Abstract:  

Image inpainting is the method of reconstructing the missed or damaged region of the 

picture with certain rules that play a vital role in computer vision applications. Numerous 

image inpainting approaches have been recently proposed that effectively reconstruct the 

missed regions. Traditionally the missed regions are restored by schemes that are derived 

from the diffusion models, exemplar approaches, and sparsity approaches. Different hybrid 

schemes are derived from these traditional schemes that show reasonable performance in 

missed region reconstruction. Recently deep learning-based approaches which are derived 

from the architectures of Generative adversarial networks (GAN), Convolutional neural 

networks (CNN), Transformers, and U-Net are commonly used for effective image 

painting. More specifically numerous approaches have been derived using the advantage of 

GAN and CNN architectures. These schemes focus on the reconstruction of global 

structures and local texture components of the missed region from the known region. 

Therefore, the paper provides a review of different traditional, and recent deep -learning 

schemes.  

Keywords: Image Inpainting, Exemplar approach, GAN approach, Convolutional neural 

network, GAN model. 

 

1. Introduction 

The art of restoring damaged photographs or paintings that have minor damages namely spots, dusts, 
cracks, and scratches is termed to be image inpainting [1]. The image inpainting procedure improves 
the visual appearance of the images. The digital image inpainting usually interpolates the 

neighborhood of the missed region to restore the missed area. i.e. the known picture information is 
utilized to estimate the damaged region. Image inpainting [2] has different applications namely old 

photo coloring, scratch removal, text removal, watermark removal, object/undesired region removal, 
etc. The different applications of image inpainting are illustrated in Fig. 1. Such applications can be 
broadly classified as restoration of damaged regions, Object removal, image completion, and artistic 

applications [3]. 

 

Fig. 1: Practical use of image inpainting algorithms 
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The image inpainting process should preserve the semantic structure while synthesizing the damaged 

or unknown region. The image inpainting also improves the resolution and helps to recover the 
images that are damaged due to storage, and transmission. The two broad classes of image inpainting 

schemes are the deep learning approach and the traditional approach as illustrated in Fig. 2. The 
traditional schemes include diffusion-based schemes [4], exemplar-based schemes [5], and sparsity-
based schemes [6]. 

 

Fig. 2: Classification of various image inpainting schemes 

Different deep learning architectures are derived from the CNN [7], GAN [8], Transformer [9], and 

U-Net structures [10]. There are two challenges in image inpainting application from a practical 
perspective. (i) Restoring the missed or damaged region from the known region to obtain the 
complete images. Such challenges are present in the reconstruction of old photographs. (ii) Removal 

of undesirable content from the picture, and replacing the region with plausible content. Such a 
challenge occurs mostly in photo editing for removing the objects and the watermark content. Also, 

the behavior of the picture inpainting scheme depends on the mask ratio. 

The paper has the following forthcoming sections. Section 2 deliberates the outperforming traditional 
inpainting schemes and section 3 discusses the works that are related to deep learning. Section 4 

discusses the dataset and important evaluation measures used for the analysis of image inpainting 
schemes. Section 5 shows the performance comparison of different approaches and lastly, the 

conclusion of the paper is illustrated in Section 6.  

2. Traditional Schemes 

The traditional image inpainting schemes include the approaches that are derived from the diffusion 

model, exemplar approach, and sparsity approach. This approach uses mathematical rules to derive 
the missed pixels. 

2.1  Diffusion model-based approach  

Diffusion models [11] are utilized in diffusion-based image inpainting. The two processes involved 
in diffusion-based inpainting are reverse and forward processes. The forward procedure adds the 

noise in multiple steps so that the image becomes completely noisy. The Stochastic-differential 
equation is used to represent the forward process. The noise added an image at iteration 𝑖 can be 
represented as, 

𝐼𝑖 = √1 + 𝛾𝑖 𝜌𝑖 + √𝛾𝑖 𝐼𝑜        (1) 

Here, 𝐼𝑜  resembles the input image, 𝛾𝑖  controls the noise over iteration 𝑖, 𝜌𝑖 represents the noise that 

is added at iteration 𝑖. The reverse noise process removes the noise to reconstruct the original image. 
This was also performed iteratively. The two regions used in image inpainting include the unmasked 
region and the masked region. The visible part of the image is termed be unmasked region. The 
unmasked region helps to identify the mask area content. The mask area resembles the picture 

region, where the image pixels are corrupted, missed, or intentionally modified. It also may be due to 
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an occlusion (unwanted objects). The model learns to recover the visual content from the noisy 

image on the unmasked region. The same recovery procedure is followed in the masked region to 
complete the image inpainting process. The forward process depends on parameters such as the 

number of diffusion steps, noise type, and noise schedule. The reverse process depends on the model, 
noise, predictor, and conditioning mechanism. Diffusion schemes namely Denoising diffusion 
implicit models (DDIM) [12], and denoising diffusion probabilistic models (DDPM) [13] are 

commonly used diffusion models. 

2.2 Exemplar-based schemes 

The exemplar approach [14] aims to minimize the energy function 

𝑃 = 𝛼𝑃𝑑(𝐼) + 𝛽𝑃𝑠(𝐼)       (2) 

𝑃𝑑(𝐼) resembles how the inpainted image agrees with the known pixels and 𝑃𝑠(𝐼) resemble the 
continuity between the inpainted, and original region. 𝛼, and 𝛽 resembles the weight to control the 
data term, and smoothness term respectively.  The exemplar approach uses the principle of borrowing 

the information (known as exemplars) from the content available region to estimate the content of the 
masked area. This approach uses a patch-based reconstruction [15] instead of using pixel-wise 
interpolation. The main process involved in this exemplar approach is selecting the patch from the 

known region (unmasked region). The selected patch should closely match the neighborhood of the 
masked region. The matching is done based on criteria such as contextual consistency, texture 

similarity, or color similarity [16]. During the patch transfer, the patches are aligned at the 
boundaries. To have a smooth transition between the patched region, and the boundaries, the region 
is blended [17]. Usually, the masked regions are filled with patches step by step. The performance of 

the exemplar-based approach depends on parameters such as search window size, patch overlap, 
patch size, boundary propagation strategy, matching criteria, inpainting iterations, patch matching 

distance, and patch search strategy. The Greedy search algorithm [18] is commonly used to search 
the patches. 

2.3 Sparsity-based schemes 

This approach uses the sparsity concept to estimate the missed region. The principle of this approach 
is that a natural image can be compressed to a few coefficients. These coefficients act as a dictionary 

element or basis function. Fourier, wavelet, and DCT transform are utilized to estimate the 
coefficients. The performance of this approach depends on the transform type, stopping criterion, 
optimization type, and sparsity regularization parameter λ. The reconstructed image in sparse based 

approach can be represented as, 

𝐼𝑟 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝑐
{‖𝑄(𝐶 − 𝐶𝑝)‖2

2 + 𝜆‖𝑍𝑐 ‖1}        (3) 

𝑄 represents the projection operator. 𝐶𝑝 and 𝜆 represents the partially observed image, and 

regularization factor respectively. ‖𝑍𝑐 ‖1 resembles the 𝑙𝑖 − 𝑛𝑜𝑟𝑚 of the sparse coefficients, and 𝐶 
resembles the input image. The sparsity approach [19] uses controllable generation and content 
initialization to perform the image inpainting. A multi-pixel window mechanism was also used [20] 

to capture more fine details. 

3. Deep learning-based image inpainting 

Several researchers developed image inpainting schemes that are derived from, CNN, GAN, 

Transformer, U-Net, Attention, and texture-structure models. 
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3.1 CNN-based schemes 

The CNN-based approach [21] usually has an encoder, and decoder unit where the encoder structure 
collects the high-level descriptors from the visible region sequence of convolutional filters that 

increase the feature maps. A bottleneck layer is used after the encoder which shows the compressed 
representation of the feature map. Quaternion CNN [22] was proposed by Miao et al. that overcome 
the two important challenges in quaternion matrix estimation. Firstly the performance of image 

inpainting for the quaternion matrix approach highly depends on the type of regularizer. A regularizer 
won't show a better performance for all-natural images. Secondly, due to the non-commutativity 

property in multiplication for the quaternion matrix, optimizing the quaternion approach is difficult. 
The two challenges are overcome by the use of untrained quaternion CNN [23]. The loss function in 
the CNN-based approach can be expressed as, 

ƞ(𝐼𝑟 , 𝐼𝑖) = 𝜆ƞ
𝑟
(𝐼𝑟) + ƞ

𝑑
(𝐼𝑟 , 𝐼𝑖)      (4) 

ƞ
𝑟
(𝐼𝑟) resembles the regularization term, whose weight is controlled by the hyperparameter 𝜆. 

ƞ
𝑑

(𝐼𝑟 , 𝐼𝑖) resembles the data loss between the inpainted picture 𝐼𝑟, and ground truth picture 𝐼𝑖. 

An adaptive fusion process [24] was introduced by Zhu et al. that transfers visual style descriptors of 

known regions to unknown regions. The transformer-based approach provides a better global 
correlation, while the CNN-based approach can effectively reconstruct the local patterns. The global, 

and local advantages of the transformer, and CNN are combined to derive a local-global mixture 
[25]. Inception networks [26], [27], [28] architectures, ResNet [29], and VGG [30], structures are 
derived from the traditional CNN approach. 

3.2 GAN-based schemes 

 

Fig. 3: GAN-based architecture in image inpainting 

The two major components to perform image inpainting [31] in GAN architecture are the Generator 

module and Discriminator module as depicted in Fig. 3. The total objective function in GAN is 

𝜂𝑡 = 𝜆𝜂𝑝𝑖𝑥 + 𝜂𝐺         (5) 

Here, 𝜂𝑝𝑖𝑥  represents the pixel-wise loss, and 𝜂𝐺  represents the generator loss.  

The author Li et al. [32] analyzed the inability of the traditional GAN in reconstructing the texture, 

and structures of the missed region simultaneously. This approach introduces a texture, and structure-
guided model, that uses the subnetworks such as refinement network, texture, and structure 

reconstruction process. The texture, and structure reconstruction process can restore more fine 
texture, and coherent structures than the traditional GAN. Finally, the refinement network combines 
the structure, and texture to obtain the inpainted picture. To reduce the computational burden of the 

GAN structure, the generator unit was included with a multi-task learning process [33]. This 
approach was used in inpainting the biomedical images in which the encoder-decoder performs three 
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processes namely detecting the edges, generation of organ boundary, and completion of resultant 

images. The structure of the GAN uses regularization functions and an optimum number of layers. 

A dual-stage GAN [34] was derived where the first and second stage uses structure-aware and 

texture-aware learning mechanisms. The structure learning recovers the low-frequency component, 
while the texture-aware learning recovers the high-frequency component. The performance of GAN 
was enhanced by models namely GAN-Gradient Penalty [36], least squares GAN [35], and 

Wasserstein GAN [37] architectures. 

3.3 Transformer based schmes 

 

Fig. 4: Representation of transformer model in image inpainting 

Fig. 4 shows the structure of the transformer model-based image inpainting. The total loss in 
transformer-based schemes is 

𝜂𝑡 =
𝜆𝑝𝑒𝑟

𝑁
∑ ‖𝛿𝑛(𝐼𝑖) − 𝛿𝑛(𝐼𝑟)‖2

2 +
1

|𝜌|
∑ ‖𝐼𝑟(𝑗) − 𝐼𝑖(𝑗)‖2

2
𝑗∈𝜌

𝑁
𝑛=1    (6) 

𝜌 resembles the indices of masked pixels, 𝛿𝑛(.) resembles the features extracted at the nth layer. 𝑁 
resembles the number of layers and 𝜆𝑝𝑒𝑟  resembles the constant. The transformer model [38] used by 

Huang et al. uses a U-Net structured transformer named self-attention transformer. This transformer 

reduces the complexity of the multi-headed attention structure. This approach replaces the traditional 
attention estimation. The irrelevant features are excluded by the sparse attention map that uses the 

ReLU function instead of the canonical function. Transformer-based schemes such as the ZITS 
network [39], MAE model [40], and transfill model [41] also provide reasonable performance.   

The performance of the transformer reduces if the missed region is large. To address this challenge, a 

visual transformer structure [42] is introduced that uses a variable hyperparameter. This approach 
initially obtains multi-scale patches by partitioning the descriptor maps. The computation burden of 

the self-attention process is balanced by assigning the feature map to different heads. This approach 
also minimizes the number of feature map channels by a depth-wise convolution strategy. A dual 
discriminator approach [43] was used to improve the local and global discrimination in GAN. Also, 

the texture-aware module in GAN architecture [44] reduces the complexity of the traditional GAN 
structure.  
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3.4 Attention-based schemes 

 

Fig. 5: Representation of attention-based image painting 

The attention-based approach provides a high preference for certain regions while reconstructing the 
missed region. Fig. 5 illustrates the representation of attention-based image painting [24] which has 
the single encoder section with Convolutional filters and ResBlocks represented as (𝑅𝑒𝑛), while the 
decoder has three sections of convolutional filters and attention modules represented as 

(𝑅𝑑𝑒
1 , 𝑅𝑑𝑒

2 , 𝑅𝑑𝑒
3 ). Two attention modules namely multiscale attention-based feature extraction 

(MAFE) and gradient attention guidance (GAG) are utilized in the three sections of the decoder. Four 

different loss functions namely style loss (𝐿𝑠𝑡𝑦𝑙𝑒), perception loss (𝐿 𝑝𝑒𝑟𝑐 ), reconstruction loss (𝐿 𝑟𝑒𝑐 ) 
and gradient loss (𝐿𝐺 )  are utilized to update the multiscale gradient loss (𝛥𝐺) of the decoder. 
Different attention approaches namely coherent semantic attention [46], contextual attention [45], 
and multistage attention [47] provide fine texture information during the recovery of missed regions.  

3.5 U-Net based schemes 

The structure of the U-Net and Encoder-Decoder structures are represented in Fig. 6. Deep networks 
and attention processes are combined [48] to improve the texture distortion during the reconstruction 

process. The generator was constructed using the Res-U-Net structure. The residual structure was 
used in the encoder of the U-Net-based backbone. The skip connection uses the attention module 
which improves the effectiveness of the inpainting process. 

 

Fig. 6: Difference between U-Net architecture and Encoder-Decoder structures 

The loss function in U-Net-based image inpainting can be represented as, 

ƞ(𝐼𝑟 , 𝐼𝑖) = 𝜆𝑡ƞ
𝑡
(𝐼𝑟 , 𝐼𝑖) + 𝜆𝑝𝜂𝑝(𝐼𝑟 , 𝐼𝑖)      (7) 

Here, 𝜂𝑝 resembles the perceptual loss represented as, 
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ƞ
𝑝

(𝐼𝑟 , 𝐼𝑖) = ‖𝛿(𝐼𝑟) − 𝛿(𝐼𝑖)‖2
2     (8) 

Here, 𝛿(∙) represents the descriptor extraction function. 𝐼𝑟  and 𝐼𝑖 resembles the reconstructed image 

and input image respectively.  In equation (7), the total variation loss function 𝜂𝑡 can be denoted by, 

𝜂𝑡(𝐼𝑟) = ∑ {(|𝐼𝑟(𝑢 + 1, 𝑣) − 𝐼𝑟(𝑢, 𝑣)|) + (|𝐼𝑟(𝑢 + 1, 𝑣) − 𝐼𝑟(𝑢, 𝑣)|)}𝑢,𝑣   (9) 

𝜆𝑝, and 𝜆𝑙 are hyperparameters to control the perceptual, and total variation loss respectively. 

Different networks are derived from the U-Net structure that involves Pyramid-Network [49], partial 
convolution [50], deep fusion network [51], and Shift-Net [52]. The block attention process was 

included with the ResNet architecture to derive the improved inpainting architecture [53] that shows 
a lesser variation between the boundaries of the mask region and the un-mask region. The self-
attention-based symmetric connected U-Net [54] estimates fine texture on the missed regions.   

3.6 Texture and structure based schemes 

In this scheme, the texture of the unmasked area is utilized to fill the masked area. The texture 

pattern of the masked area is synthesized based on the structure, and texture of neighboring 
unmasked pixels. Wang et al. [55] used a small receptive field-based shallow, and deep structure to 
minimize the formation of artifacts during reconstruction and to perform local refinement. The global 

refinement was performed by a large receptive field-based attention process. 

Liu et al. [56] combined the pros of the transformer model, and CNN model to derive a bidirectional 

stream network. The CNN network is utilized to collect more local information, while the 
transformer is utilized to collect relevant features throughout the image. The CNN, and transformer 
model are developed on a hierarchical encoder and decoder architecture that minimizes the 

complexity. The degradation of GAN performance for large missed regions is addressed by the 
authors Chen et al. [57] by proposing a backbone network. The backbone network uses a non-

pooling structure to reconstruct the texture descriptors. Thus the network has an image refinement 
network that follows the texture reconstruction and structural reconstruction network as illustrated in 
Fig. 7. 

 

Fig. 7: Structure of the texture and structural-based approach 

Multi-stage inpainting schemes are also commonly used in recent years. Usually, the number of 

refined networks is improved to enhance the inpainting performance. But increasing the refined 
networks also degrades the image due to the presence of artifacts, and blurring effects. To address 
this issue a perspective field structure [58] is introduced that uses a U-network with a multi-head 

attention structure. Five receptive field sub-networks are used in decreasing order of receptive field 
perspective. The influence of local pixels in the convolution process is minimized by the usage of the 

TransConv structure. An adaptive feedback process is utilized to derive an adaptive feedback 
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network [59]. This network have the ability to derive the inpainting result, and uncertainty map 

simultaneously. As the iteration proceeds, the uncertainty is gradually reduced by the feedback 
network, which also improves the inpainting result. 

 

Fig. 8: Feature fusion approaches (a) Fusion at transformer stream (b) Fusion at CNN stream (c) 
Unified fusion (d) Fusion in both transformer and CNN stream 

The features obtained by individual networks are combined by the fusion process. i.e. the texture 
features obtained by one network and the structural feature obtained by another network are 
combined by one of the fusion processes illustrated in Fig. 8. Here four feature fusion approaches are 

utilized to merge the transformer features (𝐺𝑡 ) and the CNN feature (𝐺𝑐). 

4. Conclusion 

This paper delivers a systematic review of different traditional and deep learning schemes used for 
picture inpainting applications. The paper discusses the uniqueness of the different research works 

that are derived from exemplar, diffusion, and sparsity-based schemes. The work also reviews the 
various deep learning structures that are used to perform image inpainting that effectively 

reconstructs the texture and structure of the missed area. More specifically the paper also focuses on 
the hybrid architectures that combine the advantage of CNN and GAN architecture in the 
reconstruction of local texture and global structure. The paper also reviews the architectures that are 

derived from the attention approaches, U-Net structures, and transformer-based approaches that show 
better performance for higher mask ratios.  
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